
1

Verification of C++ Flight Software with the
MCP Model Checker

S. Thompson, G. Brat
USRA/RIACS

NASA Ames Research Center
MS 269/2

Moffett Field, CA 94035-1000
650-604-{0456,1105}

{thompson,brat}@email.arc.nasa.gov

Abstract—The Constellation project at NASA calls for
designing a Crew Exploration Vehicle (Orion, also called
CEV) and Cargo Launch Vehicle (Ares, also called CLV).
Both projects will rely on newly designed flight control
software. The verification of these C++ flight codes is
critical, especially for Orion, since human life will be at
stake. There exist some commercial tools for the verification
of C++ code. However, none of the commercially available
tools does a good job a finding bugs dealing with
concurrency. Yet both software for Orion and Ares are
expected to be multi-threaded. With this work we are
proposing to address the issue by developing a suite of
tools that can be used to verify C++ code. Our tools will
range from a static analyzer (based on abstract interpretation
like C Global Surveyor) to a model checker (MCP, which
we present in this paper) including a symbolic execution
engine for test case generation (TPGEN). This paper focuses
on MCP and its application to Aerospace software.1 2

TABLE OF CONTENTS

1. INTRODUCTION .. 1
2. VERIFYING C++ CODE 1
3. THE MCP MODEL CHECKER 4
4. THE OAE CASE STUDY 5
5. RELATED WORK... 6
8. CONCLUSIONS .. 7
REFERENCES.. 7
BIOGRAPHY... 8

1. INTRODUCTION

The Constellation project at NASA calls for designing a
Crew Exploration Vehicle (Orion, also called CEV) and
Cargo Launch Vehicle (Ares, also called CLV). Both
projects will rely on newly designed flight control software.
In the case of Orion, the software process relies on a model-
based approach, in which C++ software will be generated
from high-level models (Statecharts or a similar formalism).
The software design of Ares also calls for a C++
implementation. The verification of these C++ flight codes
is critical, especially for Orion since human life will be at
stake.

1
1 1-4244-1488-1/08/$25.00 ©2008 IEEE.
2 IEEEAC paper #1177, Version 1, Updated October 19, 2007

There exist some commercial tools for the verification of
C++ code. Most of them are focusing on testing (test
drivers, test cases), and, some are using more advanced
techniques such as static analysis (Coverity, Klocwork,
PolySpace, Code Sonar to name only a few). However,
none of the commercially available tools does a good job a
finding bugs dealing with concurrency. Yet both software
for Orion and Ares are expected to be multi-threaded.

Concurrency errors are usually addressed by model checking
tools. Unfortunately, available model checkers either deal
with Java (like Java Path Finder, JPF [1]) or require a
translation to a specialized modeling language (e.g., to
Promela for the SPIN model checker [2]). There exist some
ways of partially addressing the problem: for example,
model-driven verification allows C code fragments to be
embedded in Promela models. However, there does not exist
any tool capable of model checking C++ code directly.

With this work we are proposing to address the issue by
developing a suite of tools that can be used to verify C++
code. Our tools will range from a static analyzer (based on
abstract interpretation like C Global Surveyor) to a model
checker (MCP, which we present in this paper) including a
symbolic execution engine for test case generation
(TPGEN). This paper focuses on MCP [3] and its
application to Aerospace software. For this paper, we chose
a small example called OAE, On-Board Abort Executive,
which implements the monitoring and execution of abort
conditions during launch. In the future, we will also apply
MCP to the verification of International Space Station (ISS)
software such as the Water Recovery System (WRS) and the
Urine Processing Assembly (UPA).

This paper is organized as follows. The first section
describes our global approach to the verification of C++
code. We briefly describe the V&V technologies we are
developing and how they fit together. The second section
focuses on MCP and its capabilities. The third section then
details our case study, i.e., applying MCP to the OAE
code. We then discuss related work and present our
conclusions.

2. VERIFYING C++ CODE

C++ is a very complex language in terms of verification.
C++ relies on powerful (from a coding point of view) but

2

complex (from a verification point of view) constructs such
as

• templates, which are addressed through their instances
(rather than the generic form) in verification,

• dynamic object allocation, which abundant use in C++
code renders static analysis difficult,

• implicit (and explicit) constructors and destructors can
have confusing behaviors,

• multiple inheritance also has perverse effects, and,

• overloaded operators can also be tricky.

This multitude of features is even more difficult to verify
when they are combined (as is routinely done in C++
programs).

This complexity is a powerful motivation for having tools
that can assist in the verification of C++ programs. It is
also a source of problems when designing such tools.
When attempting to define a verification strategy for C++,
it quickly becomes clear that there does not exist a “silver
bullet” tool which can do the job. In our case, we rapidly
decided that developing a suite of complementary tools
would be the right solution.

To address C++, we built on the experience gathered while
analyzing C programs. In [4,5], we showed how we used
abstract interpretation techniques to build a static analyzer
for flight software written in C. We applied CGS to flight
code for Mars missions, controllers for the ISS, and even,
to the main engine controller for the Space Shuttle. We
were quite happy with the results of the tool.

However, we realized that we would not be able to handle
all (even a large subset) classes of errors with sufficient
precision. Indeed, static analyzers almost always generate
warnings that might correspond to real errors or merely
unfeasible by-products of the approximations done by the
tool for scalability reasons (also commonly called false
positives). Classifying a warning as a real error or as a false
positive takes time. Therefore, a tool that generates a high
rate of warnings is likely to be ignored by the user
community. So, the solution is to use other tools with
different characteristics in a process in which each tool
compensates for the weaknesses of another tool.

In our case we have selected three types of verification
technology, which we believe complement each other:

1. static analysis, which catches most of the so-called
runtime errors,

2 . model checking, which can catch many
concurrency errors, and,

3 . symbolic execution, which can generate
automatically test cases that exercise precise paths
in a program.

Static analysis

The goal of static analysis is to assess code properties
without executing the code. Several techniques can be used
to perform static analysis, such as theorem proving, data
flow analysis [6], constraint solving [7], and abstract
interpretation [8]. The purpose of most static analyzers is to
catch runtime errors.

Runtime errors are errors that cause exceptions at runtime.
Typically, in C, either they result in creating core files or
they cause data corruption that may cause crashes. In this
study we mostly looked for the following runtime errors:

• Access to un-initialized variables

• Access to un-initialized pointers

• Out-of-bound array access

• Arithmetic underflow/overflow

• Invalid arithmetic operations (e.g., dividing by zero or
taking the square root of a negative number)

• Non-terminating loops

• Non-terminating calls.

The price to pay for exhaustive coverage is incompleteness:
the analyzer can raise false alarms on some operations that
are actually safe. However, if the analyzer deems an
operation safe, then this property holds for all possible
execution paths. The program analyzer can also detect
certain runtime errors which occur every time the execution
reaches some point in the program. Therefore, a program
analyzer can be used either as a debugger that detects
runtime errors statically without executing the program or as
a preprocessor that reduces the number of potentially
dangerous operations that have to be checked by another
validation process (code reviewing, test writing, and so on).

Model checking

Originally model checking was a method to formally verify
finite state systems [9]. This is achieved by verifying if the
model (derived from the design phase or by abstraction of
the code) satisfies a logical property (derived from the
requirements). Properties are often expressed as temporal
logic formulas, but simple assertions can also be checked.

Explicit state model checking (which is what we are using
in this work) uses an explicit representation of the system's
global state graph, usually given by a state transition
function. An explicit state model checker evaluates the
validity of the temporal properties over the model by
interpreting its global state transition graph as a Kripke
structure, and property validation amounts to a partial or
complete exploration of the state space.

3

The first interesting aspect is how to represent the state
space and its transition. In SPIN, the Promela language is
used to specify the model; it therefore requires a translation
pass to check software programs. However, several
approaches have been designed recently to make explicit-
state model checking work directly on code. For example,
JPF is a model checker that works on Java bytecode. In
JPF, the bytecodes of the program describe the state
transitions, the state being defined by the actual state of the
program at each program point (or by an abstraction of this
state). MCP is similar to JPF in the sense that it works
directly on software, but it uses a process similar to SPIN.

The second characteristic of explicit-state model checking is
that it explores systematically every reachable state from the
root. If one considers the example of a sequential program,
this corresponds to a trace through the system. If one
considers a multi-threaded program, then it corresponds to
exploring all the possible interleavings of the threads in the
program. Traditionally, the search follows a DFS pattern.
However, there have been attempts at using different search
strategies, including BFS and some heuristics.

Lastly, linear temporal logic properties are the properties
most often checked by explicit-state model checkers.
Temporal logic properties express temporal properties over
an execution trace. Temporal operator can express the fact
that

• something always happens in a trace,

• something happens next in a trace, and,

• something will eventually happens in the trace.

This allows a user to express properties such as “Always
after p there is eventually q“. This particular example is
interesting since it corresponds to a response property,
which is often used in specification for embedded systems
(especially in control). In practice, users have problems
expressing specification in LTL. Most often explicit-state
model checkers are used to verify assertions (at some
program point) and problems due to multi-threading
(deadlocks, race conditions, and so on).

Symbolic execution

In the symbolic execution of programs, instead of supplying
the normal inputs to a program (e.g. numbers) one supplies
symbols representing arbitrary values [10]. The execution
proceeds as in a normal execution except that values may be
symbolic formulas over the input symbols. Moreover, the
symbolic execution engine generates and stores constraints
that satisfy conditional branch type statements. By solving
these constraints, one can decide if the path being explored
is feasible. Once this is decided, the constraint gathered for
inputs can be solved to generate test cases that will exercise
the code at run time.

The major difference between symbolic execution and model
checking is the fact that symbolic execution manipulates

symbolic names instead of real values. A model checker
tries different values, but it manipulates concrete values.
However, both techniques tend to take a path-sensitive
approach to state space exploration.

Now, symbolic execution is actually closer to static
analysis. It is actually not clear where static analysis stops
and symbolic execution starts. However, static analysis
tends to propagates abstractions of possible values while
symbolic execution propagates a system of constraints that,
if solved, represents the exact values that can be taken by
the program. The static analysis abstractions are safe
approximations of the constraints generated by the symbolic
execution engine. The difference stems from the fact that a
static analyzer aims at exploring a whole state space while
symbolic execution generally focuses on a given path in the
state space.

For example, JPF offers a symbolic execution capability to
generate test data; it uses a BytecodeFactory to override
JPF's core bytecodes to generate concrete test cases. In a
nutshell, this works by using the JPF field/stackframe
attribute system to collect symbolic path conditions, which
are then fed into a constraint solver to obtain concrete test
data.

We have already developed a symbolic execution engine for
C++, but it relies on an earlier front-end of LLVM (LLVM
1.8). As a result it does not handle all C++ programs yet.
We are in the process of porting it to LLVM 2.1.

Tool Interactions

The model checker can benefit from the static analyzer in
several ways. First, the static analyzer might pinpoint
regions of the state space that need further exploration by
the model checker. Second, static analysis can be used to
provide partial order reduction information, which allows a
model checker to ignore some interleavings, thus reducing
the state space being explored without missing behaviors.

The static analysis can benefit from the model checker in
two ways. First, as shown in [11], the model checker can
and the static analyzer can work in symbiosis. The model
checker can provide precise alias information that can be
used by the static analyzer to refine its partial order
reduction analysis. Second, the model checker can be used
to refine the precision of the static analysis by exploring
systematically regions of the state space with warnings. It
can also be used to provide full counter-examples
corresponding to errors (instead of the plain source line
information returned by the static analyzer).

The symbolic execution engine is useful to both the model
checker and the static analyzer because of its ability to
compute test cases (by solving constraints on inputs). This
feature can be used to turn static analyzer warnings into real
errors (when they’re not false positives) by providing a test
case that will trigger the error. It can also be used to close
the environment for the model checker. The goal is to
provide (input) drivers for the model checker to feed
concrete value into the program being model checked.

4

3. THE MCP MODEL CHECKER

This section focuses on MCP and its capabilities. We also
briefly describe the LLVM framework [12] since our tools
are built on top of it.

Figure 1. Simplified LLVM Architecture.

The LLVM framework

The MCP model checker is built on top of the LLVM
framework. Actually all of our C/C++ analysis tools are
using the LLVM framework. Figure 1 shows a simplified
version of the LLVM flow. Note that many LLVM tools
have been omitted here for clarity. LLVM is a large, rich
toolset, so we concentrate on the subsystems that are
specifically relevant to MCP. A modified version of the gcc
front-end is used to parse the C++ source code and to lower
most of the language's constructs to a level closer to that of
a typical C program. The original gcc back-end is discarded
in favor of emitting LLVM bitcode, which is then
optimized and passed on to various alternative back-end.

One of the main motivating ideas behind LLVM was
enabling whole program optimization, something that has
been traditionally difficult to approach with existing
compiler architectures. The LLVM bitcode format has been
specifically designed to support this and other kinds of
optimization. A Static Single Assignment (SSA)
representation is adopted, making many analyses and

transformations (including ours) far more straightforward
than they might otherwise be.

The MCP Architecture

Figure 2. MCP Architecture.

MCP has a simple, expandable architecture (See Figure 2).
We refer the reader to [3] for a detailed description of the
tool. We now give an overview of MCP’s main elements.

Transformation passes help transform the program under test
into a version that can model check itself. They are
implemented as extension modules for LLVM's opt
program transformation framework. Transformations provide

• instrumentation for tracing: model checkers produce
counter-examples (or traces) when they find violations

• Memory read/write instrumentation, which is needed
for backtracking efficiently. Backtracking is done the
end of the current path being explored or when a
violation has been found.

• Yield point insertion, which is needed to explore all
interleavings due to thread scheduling or switch
between different values of a data abstraction.

The run-time system, which is implemented in C++, is
compiled with LLVM's gcc front-end and then linked with
the program under test after it has been transformed. Its
primary purpose is to intercept system calls that MCP needs

Modified gcc
front-end

LLVM
code
 generator

LLVM
just-in-
time
compiler

LLVM
interpreter

LLVM
optimise
r

LLVM
bitcode

Native
executable

In-memory
native code

LLVM
bitcode

llvm-gcc
compiler

MCP
transformation

passes

LLVM
opt
tool

LLVM
linker

mcp
tool

Program
under
test

Run-
time
system
sources

llvm-gcc
compiler

Final bitcode

bitcode

Instrumented bitcode

5

to handle differently, e.g. printf, malloc, free, memset,
memmove and memcpy. This approach also provides a
convenient place to implement compatibility wrappers that
allow code written to specific operating system APIs to be
handled without modification.

From a practical point of view, model checking is initiated
by users by running the mcp command-line application. The
mcp tool comprises an instance of the LLVM just-in-time
(JIT) compiler environment, as well as MCP's
implementations of memory versioning, hashing, state
space searching, etc.

Searching for assertions

The run-time system intercepts calls to the commonly used
assert C/C++ library function and passes them on to the
model checker core as calls to mcp_assert, which has the
effect of halting execution and generating a backtrace when
an assertion failure is detected. Currently, this is the
primary means by which failure conditions are identified in
programs, though support for more complex conditions
expressed in the form of temporal logic expressions is
planned.

In searching a program's state space for failure conditions,
explicit-state model checkers must essentially search a
decision tree that represents the choices that are made that
influence a program's run-time functionality. Normally, for
reasons of practicality, a test driver is implemented that
concentrates the attention of the model checker on a specific
part of the state space.

In most cases, numeric decisions should be implemented in
the driver (as in our OAE case study). A numerical decision
is normally requested by the test driver for a program, e.g.

int a;

mcp_int_decision(1, 5, &a);

In the above example, the mcp_int_decision call
effectively splits reality into five separate versions, with a
taking a distinct value from the range [1, 5] in each case.

MCP implements several search strategies that may be
chosen independently of other options. MCP offers the
traditional breadth-first and depth-first search strategies as
well as

• Heuristic search: in this mode, MCP's normal double-
ended state queue is replaced by a priority queue that
returns states in descending order of a program-specified
metric.

• Randomized search, which is broadly similar to
breadth-first search, with the exception that next-states
are inserted at randomly chosen positions within the
state queue. This search strategy should not be regarded
as equivalent to conventional randomized testing. In

practice, randomized search has a `look and feel'
somewhere between that of breadth- and depth-first
search, but in practice it has less tendency to get stuck
in local minima.

• Interpret-only: since programs annotated with calls to
the MCP API can not easily be executed natively
without modification, this mode provides a convenient
means of executing programs conventionally within the
MCP environment. As usual, however, all visited
instructions and source lines are logged, allowing a
counterexample trace to be generated if a fault is
encountered.

 4. THE OAE CASE STUDY

In previous experiments in the RSE group at NASA Ames
Research Center, the JPF model checker (especially, its
symbolic execution capabilities) was applied to a Java
translation of On-board Abort Execution (OAE). The
experiment successfully demonstrated that these verification
technologies can be applied to real NASA code. However,
our goal is to provide technologies that can directly apply to
C and C++ code. Therefore, we are running again the same
experiment using MCP, our model checker for C++.

The OAE software is a relatively small piece of software
which has been developed to study abort conditions for the
Orion and Ares vehicles in the Constellation program. It is
part of the ANTARES simulation environment (ANTARES
is derived form the ARES simulation environment
developed for the Space Shuttle). Included in ANTARES is
code for simulating flight dynamics, which includes off-
nominal dynamics up to a point.

The first step consists of annotating the OAE program with
assertions. We basically added an assertion each time an
abort was raised in the code. Violating an assertion therefore
means that an abort is not raised as it should.

int main(int argc, char **argv)
{
 FLIGHT_RULE_CHECK fr_chk;
 SCENARIO_EXEC scen_exec;

 // Zero the data structures (this gives us
 // determinism without needing us to
 // manually set everything)
 memset(&fr_chk, 0, sizeof(fr_chk));
 memset(&scen_exec, 0, sizeof(scen_exec));

 // Enable the flight rule checker
 fr_chk.enable = On;

 // Conditions for FR_A_2_A_1_A
 int t1;
 mcp_int_decision(1, 3, &t1);

6

 fr_chk.inputs_fr.sysIN_fr.stage1_chmbr_pres = t1;
 fr_chk.iloads_fr.fr_stage1_chmbr_pres_min = 1.5;
 fr_chk.iloads_fr.fr_stage1_chmbr_pres_max = 2.5;

 asc_oae_fr_check(&fr_chk, &scen_exec);

 if(fr_chk.work_fr.abort_now_flag == On)
 {
 printf("$$$ Abort: %s\n",
 fr_chk.outputs_fr.fr_err_msg);
 }
 else
 {
 printf("$$$ No abort.\n");
 }

 // Stop when we encounter any abort condition
 mcp_assert(fr_chk.work_fr.abort_now_flag == Off);

 return 0;
}

Figure 3. Driver for model checking OAE.

The second step in the process of applying MCP to OAE is
to build a driver for OAE (which usually sits in the
ANTARES environment). The goal is to design a driver
that can exercise all realistic numerical inputs to OAE. The
simplified version of the driver shown in Figure 3
illustrates how the data structures taken as inputs by OAE
are initialized and how the main OAE function is called.
Remember that MCP has already transformed the OAE
software into a version that actually model checks itself
(instead of simply executing).

The test driver chooses a value for the Stage 1 chamber
pressure from a range of values; then it uses either a depth-
or breadth-first search to find a value that causes an abort to
be signaled.

System stack = 0x00000000, Initial stack =
0x00129000, Scheduler Stack = 0x00125000

--- $$$ No abort.
--- $$$ Abort: FR A_2_A_1_A: stage1 engine
chamber pressure limit exceeded

ascent_oae_fr_check.cpp(76): Assertion
failure: fr_chk.work_fr.abort_now_flag == Off
@@@ Numeric decision: 0 -> 0x00000000
... %argc_addr = alloca i32 ; <i32*>
[#uses=2]
... %argv_addr = alloca i8** ;
<i8***> [#uses=2]
... %retval = alloca i32, align 4 ;
<i32*> [#uses=4]
... %tmp = alloca i32, align 4 ; <i32*>
[#uses=4]
... %fr_chk = alloca
%struct.FLIGHT_RULE_CHECK, align 16
... %scen_exec = alloca
%struct.SCENARIO_EXEC, align 16
... %t1 = alloca i32, align 4 ; <i32*>
[#uses=4]
... "alloca point" = bitcast i32 0 to i32
 ; <i32> [#uses=0]

+++ ascent_oae_fr_check.cpp (41): int main(int
argc, char **argv)
... %argc = bitcast i32* %argc_addr to { }*
 ; <{ }*> [#uses=1]
... store i32 %argc1, i32* %argc_addr
--
--
<snipped for brevity>
--
--
@@@ Numeric decision: 1 -> 0x0012a8c0
--
--
<snipped for brevity>
------------------- Currently executing block: -

@@@ Thread decision: 165870272
... %tmp36 = icmp ne i32 %tmp35, 0 ;
<i1> [#uses=1]
... %tmp3637 = zext i1 %tmp36 to i8 ;
<i8> [#uses=1]
... %toBool38 = icmp ne i8 %tmp3637, 0
; <i1> [#uses=1]
... br i1 %toBool38, label %cond_true39,
label %cond_next43
+++ ascent_oae_fr_check.cpp (76):
mcp_assert(fr_chk.work_fr.abort_now_flag ==
Off);
... %tmp40 = getelementptr [24 x i8]*
@.str804, i32 0, i32 0 ; <i8*> [#uses=1]
... %tmp41 = getelementptr [18 x i8]*
@.str805, i32 0, i32 0 ; <i8*> [#uses=1]
... %tmp42 = getelementptr [37 x i8]*
@.str806, i32 0, i32 0 ; <i8*> [#uses=1]
... call void @mcp_stop(i8* %tmp40, i32 76,
i8* %tmp41, i8* %tmp42)
--
--

Figure 4. Trace resulting form model checking OAE.

The third step consists of model checking the program. As a
result of the model checking process, we obtain the trace
shown in Figure 4. Notice that in the first path explored by
the model checker, no abort where found and therefore no
assertion were triggered. This corresponds to the line:

--- $$$ No abort.

The model checker then backtracked explored another path
in which an assertion was triggered as shown by the
following line:

--- $$$ Abort: FR A_2_A_1_A: stage1
engine chamber pressure limit exceeded

At this point, the model checker stops its exploration,
backtracks and dumps the path that led to the failed
assertion.

5. RELATED WORK

This section describes work related to model checking,
especially, software model checking. The work cited here
may not have been applied to Aerospace software.

7

Structurally, MCP probably bears closest resemblance to
JPF [1], though at the time of writing it does not approach
JPF's maturity. The most significant differences between
JPF and MCP stem from the differences between Java and
C++; for example, JPF takes advantage of reflection and the
standard threading package in Java, which MCP can not
since those features are not present in C or C++.

Since JPF is a explicit-state model checker "a la SPIN",
MCP is also a close cousin to SPIN [2]. Besides the
explicit-state model, MCP also shares with SPIN the
concept of compiling the model checking problem into an
executable program. SPIN starts with Promela models while
MCP performs transformations on C/C++ programs to
embed the model checking problem into the original
program.

Another model checker directly addressing C++ is Verisoft
[13], which takes a completely different approach. Verisoft
follows a stateless approach to model checking while MCP
follows a conventional explicit-state model similar to SPIN
[2].

CBMC is a bounded Model Checker for C and C++
programs [14]. It can check properties such as buffer
overflows, pointer safety, exceptions and user-specified
assertions. CBMC does model checking by unwinding
loops and transforming instructions into equations that are
passed to a SAT solver. Paths are explored only up to a
certain depth.

There are, however, several model checkers that address C.
SLAM [15] is really more of a static analyzer than a model
checker. It relies heavily on abstractions, starting from a
highly abstracted form and building up to a form that
allows a complete analysis.

CMC [16] uses an explicit-state approach, but it requires
some manual adaptation when dealing with complex types
pickle and unpickle functions).

Finally, there have been some attempts within NASA to use
the Valgrind tool [17] as a crude model checker.
Unfortunately, it implies using very crude steps between
transitions.

Other approaches to model checking code involve a
translation step, be it automatic or manual. For example,
Bandera [18] provides model checking of Java programs by
translating automatically the program into a Promela [2],
PVS [19] or SMV [9] model.

8. CONCLUSIONS

In this paper we describe our approach to the verification of
C++ code for aerospace applications. We are building on
top of the LLVM framework a suite of tools including a
static analyzer, a symbolic execution engine, and a model
checker which can support the full C++ language. We have

described how each of these tools address specific error
categories (runtime for static analysis, concurrency for
model checking, and general error classes for symbolic
execution) as well as how each tool can interact with other
tools to improve the verification results.

We have partial versions of all the tools, but we have just
completed a practical version of the model checker, MCP.
We briefly describe its design and show how it can be
applied to the verification of the On-board Abort Executive
(OAE) prototype for the Orion and Ares projects. Using
assertions, we are verifying that each abort condition is
indeed addressed by the prototype.

Our future plans include porting the symbolic execution
engine from LLVM 1.9 to LLVM 2.1 and use it to do
automatic test case generation for OAE and other aerospace
C++ software. We also intend to port CGS (the static
analyzer for C) to the LLVM framework so that we can offer
static analysis of C++ programs.

REFERENCES

[1] W. Visser, K. Havelund, G. Brat, S. Park and F. Lerda.
“Model Checking Programs.” Automated Software
Engineering Journal,volume 10, number 2, April 2003.

[2] G.J. Holzmann, “The SPIN Model Checker”, Addison-
Wesley, 2004.

[3] S. Thompson, G. Brat, “The MCP Model Checker,”
submitted to PEPM’08.

[4] A. Venet and G. Brat, “Precise and Efficient Static Array
Bound Checking for Large Embedded C Programs,”
International Conference on Programming Language
Design and Implementation Proceedings, 231–242, 2004.

[5] G. Brat and A. Venet, “Precise and scalable static program
analysis of NASA flight software”. In Proceedings of the
2005 IEEE Aerospace Conference, Big Sky, MT, 2005.

[6] A. Aho, R. Sethi, and J. Ullman. Compilers: Principles,
Techniques and Tools. Addison Wesley. 1986.

[7] A. Aiken and M. Fähndrich, “Program Analysis using
Mixed Term and Set Constraints,” 4th International Static
Analysis Symposium Proceedings, 1997.

8

[8] P. Cousot and R. Cousot, “Abstract Interpretation: a
Unified Lattice Model for Static Analysis of Programs by
Construction or Approximation of Fixpoints,” 4th

Symposium on Principles of Programming Languages
Proceedings, 238–353, 1977.

[9] E.M. Clarke, O. Grumberg, and, D.A. Peled, “Model
Checking”. MIT Press, 1999.

[10] S. Anand, C. Pasareanu, W. Visser, “Symbolic
Execution with Abstract Subsumption Checking,” Proc.
of 13th International SPIN Workshop on Model
Checking of Software (SPIN), 2006.

[11] G. Brat and W. Visser , “Combining Static Analysis
and Model Checking for Software Analysis,” Proceedings
of ASE2001. San Diego, November 2001.

[12] LLVM web page: http://llvm.org/

[13] P. Godefroid, “VeriSoft: A Tool for the Automatic
Analysis of Concurrent Reactive Software,” Proceedings
of the 9th Conference on Computer Aided Verification,
Haifa, June 1997. Lecture Notes in Computer Science,
vol. 1254, pages 476-479, Springer-Verlag.

[14] E. Clarke, D. Kroening, F. Lerda, “A Tool for Checking
ANSI-C Programs,” Proc. of TACAS’04, pages
168–176, 2004.

[15] T. Ball, E. Bounimova, B. Cook, V. Levin, J.
Lichtenberg, C. McGarvey, B. Ondrusek, S. Rajamani,
A. Ustuner, “Thorough static analysis of device drivers,”
Proc. EuroSys'06 (European Systems Conference), 2006.

[16] M. Musuvathi, A. Chou, D. L. Dill, D. Engler, “Model
checking system software with CMC,” Proceedings of the
10th workshop on ACM SIGOPS European workshop:
beyond the PC, pp. 219-222, 2002.

[17] J. Seward, N. Nethercote, “Using Valgrind to detect
undefined value errors with bit-precision,” in Proceedings
of the USENIX'05 Annual Technical Conference,
Anaheim, California, USA, 2005.

[18] J. Corbett, M. Dwyer, J. Hatcliff, C. Pasareanu, Robby,
S. Laubach, H. Zheng, “Bandera: Extracting Finite-state
Models from Java Source Code,” Proceedings of the 22nd
International Conference on Software Engineering, 2000.

[19] S. Owre, S. Rajan, J. M. Rushby, N. Shankar, M. K.
Srivas, “PVS: Combining Specification, Proof Checking,
and Model Checking,” CAV '96: Proceedings of the 8th
International Conference on Computer Aided Verification,
pp. 411-414, 1996.

BIOGRAPHY

Dr. Sarah Thompson received a PhD from Cambridge
University in 2006. She has a background
in commercial software development and
hardware design. Her PhD research
applied abstract interpretation and
program transformation techniques to
electronic design for high radiation
environments. She moved to NASA Ames
in July 2006, and now specializes in
model checking and static analysis of

flight software.

Dr. Brat received his Ph.D. in Electrical & Computer
Engineering in 1998 (The University of
Texas at Austin, USA). He has
specialized on the application of static
analysis to software verification. From
1997 to June 1999, he worked at MCC
where he led a project that developed
static analysis tools for software
verification. In June 1999, he joined the
Automated Software Engineering group

at the NASA Ames Research Center and focused on the
application of static analysis to the verification of large
software systems. He co-developed and applied static
analysis tools based on abstract interpretation to the
verification of software for Mars missions at JPL, various
ISS controllers at MSFC, and the ISS Biological Research
Project at the NASA Ames Research Center.

9

